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Summary: Since the discovery of the 32Ybase-pair deletion in the

CCR5 chemokine receptor gene (CCR5-$32) and its effect on

HIV-1 infection and AIDS progression, many genetic factors

affecting AIDS have been identified. Here we quantify the impact

of 13 of these factors on AIDS progression using a new statistic

based on the mutual information between causal factors and

disease, the explained fraction. The influence of causal factors on

disease is commonly measured by the attributable fraction

statistic, but the attributable fraction is a poor measure of the

extent to which a factor explains disease because it considers only

whether a factor is necessary, not whether it is sufficient. The

definition of the explained fraction, which is analogous to R2 or

the explained variation for regression models, extends naturally to

multiple factor levels. Because the explained fraction is approx-

imately additive, it can be used to estimate how much of

epidemiological data is explained by known genetic or environ-

mental factors, and conversely how much is yet to be explained by

unknown factors. We show that 13 genetic factors can cumula-

tively explain 9% of slow progression to AIDS, an effect

comparable to the effect of smoking on lung cancer.
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The importance of a factor causing or contributing to
disease is a function both of the frequency of the factor

and of the strength of its effect. A standard measure of the
impact of a factor is the attributable fraction (AF) (alterna-
tively, attributable risk or population attributable risk) defined
as the fraction of individuals in the population with a given
outcome (eg, a specified disease) whose condition can be at-
tributed to a given risk factor.1,2 In terms of the relative risk (R)
and the frequency ( f ) of thefactor, AF = f (Rj1)/(1+ f (Rj1)).

The definition of the AF arises naturally from the
epidemiological search for exposures causing disease, for
example, smoking as a factor causing lung cancer or heart
disease. The AF is a particularly useful measure for
potentially controllable factors because it gives the fraction
of the disease that would be prevented if the factor were
eliminated. However, because the AF measures only whether
a factor is necessary for disease, not whether it is sufficient, it
is a poor measure of the extent to which known factors
explain disease for several reasons. First, the AF is inherently
asymmetric: it measures how much of one disease state can
be attributed to a given factor, but not how much of the
absence of the disease state can be attributed to the absence of
the factor. For the case of smoking and disease, it is clear that
the smoking is the exposure, but for genetic polymorphisms
affecting disease, it is not in general clear which allele or
genotype constitutes the exposure. Second, the AF is in
general not at all additive: if 2 factors are each necessary for
disease, each will have an AF of 100%. However, it would be
useful for a scientific measure of understanding to be
approximately additive, running from 0% (no understanding)
to 100% (complete understanding or ability to predict).

The influence of CCR5-$32 on HIV-1 infection
provides a good example of the asymmetry of the AF.
Homozygous CCR5-$32 people are virtually immune to
infection because they lack the requisite cellular receptor,
CCR5, for cell entry by the primary infecting strains of
HIV-1. Because this genotype is rare, the AF for CCR5-$32
homozygosity for protection from infection after multiple
exposures is only 5%.3,4 However, because HIV infection is
in fact the disease state, it is reasonable to pose the question
in the other way: how much of HIV infection can be
attributed to the presence of a functional CCR5 receptor (ie,
to the absence of the $32 mutation from at least one
chromosome); defined this way, we obtain an AF of 99%.
However, if we are concerned with measuring understand-
ing, explaining susceptibility or protection from infection
should give the same answer.

Third, the standard AF calculation requires dividing the
individuals into dichotomous groups, exposed versus unex-
posed subjects. With multiple factors, an AF may be defined
by comparing all subjects with one or more susceptible
factors with subjects with none;5 with protective factors, we
may calculate an AF for protection in the same way.
However, if there are multiple factors independently affecting
disease, there will be multiple levels of protection or
susceptibility; splitting the subjects into 2 groups does not
account for the varying effects of the factors. Moreover, this
approach cannot deal with the case of both protective and
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susceptible factors. We might compare all other subjects with
the most protected group, but if there is a rare, highly
protected group, we get the same implausible result as the
calculation of AF for not being CCR5-$32 homozygous.
Extending the concept of the AF to multiple levels in a
rigorous way is possible,6 but necessarily involves a rather
complex algorithm.

An alternative is to use a measure of correlation of disease
and factors. For ordinary linear regression, the coefficient of
determination R2 measures the ability of the factors to predict
outcomes. Schemper has extensively developed a statistic
called the explained variation (EV) which generalizes R2 and
can be calculated for more general regression models, in
particular for logistic regression and the Cox model.7Y9

The mutual information is a basic measure of prediction
or correlation between factors and outcomes.10,11 Here we
present a new statistic, the explained fraction (EF), which
uses mutual information to quantify the effect of causal
factors on disease. The EF is analogous to R2 or the EV, but is
specifically defined for a contingency table and thus allows
direct comparison to the AF. We apply the EF to a number of
epidemiological examples, in particular to the multifactorial
case of the genetic epidemiology of AIDS progression.

DEFINITION OF THE EF

Mutual Information
Whereas the AF is a measure of the importance of a

factor for occurrence of disease, an alternate approach is to
consider the informativeness of knowledge of the factor in
predicting the occurrence of disease. The mutual information
between causal factors and disease states is a specific measure
of this. Here we consider only cases where both the causal
factors and the disease outcomes are described by categorical
variables, so that their relationship is described by a contin-
gency table [aij] of frequencies, with the rows i representing
causal factors and the columns j representing disease ca-
tegories. For multiple causal factors, each combination of
factors is represented by a row. We assume initially that there
are 2 disease categories, j = 1, 2, but there are an arbitrary
number of factors or combinations of factors, i = 1 to n. The
row marginals ~2

j¼1aij ¼ ai correspond to the frequency of
the factor state i, whereas the column marginals ~n

i1 aij ¼ aj
correspond to the frequency of the disease category j.

The mutual information between the rows and the
columns of a contingency table is given by:10

I 1; 2ð Þ ¼ ~
i;j
aijlog

aij

aiIaIj
: ð1Þ

The notation I(1,2) indicates that this is the information
obtained from sampling a single individual from the
population, discriminating between the hypotheses that the
rows and columns are dependent (1) or independent (2). For
our case where the rows represent the causal factors and the
columns represent the disease categories, I(1,2) is a measure
of the information about the probabilities of disease out-

comes that we gain by knowing the factors. Recalling that the
well-known likelihood ratio statistic L is given by

L ¼ ~
i;j
Aijlog

Aij

NaiIaIj
¼ N ~

i;j
aijlog

aij

aiIaIj
; ð2Þ

where Aij are the number of subjects observed for the i, j cell
of the contingency table, we note that I(1,2) = L/N.

Explained Fraction
Consider a case in which knowledge of the causal

factors completely predicts an individual_s disease status, for
example, the case of an inherited disease caused by a single
genotype with complete penetrance. I(1,2) in this case has a
finite value, calculated below, which is a function only of the
frequencies of the disease categories. Because this represents
complete knowledge, it is reasonable to normalize the mutual
information measure by dividing I(1,2) by this maximal value
to give a measure that ranges from 0 (corresponding to no
information obtained) to 1 (corresponding to a total ability to
predict). Thus, this is a measure of the fractional extent to
which the disease is explained by knowledge of the causal
factors, which we call the EF.

To calculate the denominator of the EF, we observe that
if knowledge of causal factors completely predicts disease
outcomes, then each factor status must be totally associated
with a single disease status, so each row i of the table has a
single nonzero entry which must equal the row marginal ai.
Taking 0*log(0) K 0, Eq. (1) becomes:

Imax 1; 2ð Þ ¼ ~
i

ai1log
aiI

aiIaI1

� �
þ ~

i

ai2log
aiI

aiIaI2

� �

¼ jaI1log aI1ð ÞjaI2log aI2ð Þ ð3Þ
Because the column marginals are simply the frequen-

cies of the disease states D1, D2, we have Imax(1,2) =
jD1log(D1) j D2log(D2), which is the average information
required to specify the disease state of an individual, or the
entropy of the disease states. More generally, we can have n
disease states, so Imax(1,2) = j~jDjlog(Dj). Thus, the EF is
given by

EF ¼
~
i;j
aijlog

aij

aiIaIj

� �

j~
j

DjlogðDjÞ
: ð4Þ

We consider in Appendix 1 the relationship of the EF to
the regression R2, and in Appendix 2 some statistical
properties of the EF. Appendix 2 presents an approach to
calculating an unbiased estimator and confidence intervals for
the EF. We show in Appendix 1 that the EF is in fact
analogous to R2 and thus may be considered an EV calculated
for a contingency table. We use the name Bexplained
fraction^ (EF) because this emphasizes the analogy with the
AF. In general, logistic regression is an alternative, often
advantageous, to a contingency table calculation; we consider
the contingency table calculation here because it allows a
direct comparison of the AF. However, for any population
study (as opposed to a case control study), the EV for the
disease phenomena may reasonable be considered to be a
measure of the EF.
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EF EXAMPLES
To illustrate the calculation and the interpretation of the

EF, we consider 2 non-AIDS diseases whose epidemiology is
notably well characterized.

Tangier Disease
Tangier disease is an autosomal recessive disease

characterized by the absence of high-density lipoprotein in
plasma, with the most visible symptom being extremely
enlarged tonsils due to excessive lipid deposits.12 The
ATP-binding cassette transporter gene ABC1 was identified
by chromosomal mapping and biochemical function as a
candidate gene for Tangier disease.13,14 Examination of 5
Tangier disease pedigrees showed that 10 of 10 individuals
with Tangier disease had mutated ABC1 genes on both
chromosomes, whereas 26 of 26 individuals in the same
pedigrees lacking disease had normal ABC1 genes on one or
both chromosomes.15 Thus, for the available data, the
disease is completely explained. Formally, we have the

contingency table 26 0
0 10

� �
; there is only one nonzero entry

per row, so EF = 1. The AF is also 1, so in this case, EF =
AF. The ability of a single factor to explain a disease
completely stems from the influence of causative functional
mutational variants in a critical physiological process. Other
monogenic diseases exist, but complex diseases generally
have multiple interaction genetic and environmental causes.

Cigarette Smoking and Lung Cancer
We consider the 33-year follow-up on the Swedish

Smoking Habit Survey, which represents an epidemiological
assessment of 12,664 Swedish men at risk for lung cancer.16

Lung cancer deaths were considered together with those from
cancer of the trachea and bronchus; among males, there were
36 deaths among 8156 respondents who had never smoked,
and 177 deaths among 4508 current smokers. We first calcu-
late the AF of smoking for these cancers; using the standard
definition, we are forced to decide whether to consider former
smokers as smokers or nonsmokers (neither of which is really
satisfactory) or to exclude them from the analysis. Excluding
them from the analysis, the frequency of the exposure
(current smoking) is 0.356, the published relative risk for this
study (from a stratified analysis) is 9.40, so AF = 0.745; that
is, 75% of lung and respiratory tract cancer deaths can
be attributed to smoking. For the same contingency table, by
Eq. (4), EF = 0.096, indicating that 9.6% of the occurrence or
nonoccurrence of lung and respiratory tract cancer can be
explained by smoking (as compared with never having
smoked). Because the EF is defined for multiple exposures,
we can also consider different levels of smoking and can
include former smokers as a separate category. With this
additional information, EF = 11.5%.

Both of these analyses give an EF much smaller than
the AF for being a current smoker. The AF is large because it
reflects only the fact that almost all of those who die of lung
cancer are smokers. The EF also reflects the fact that most of
those who smoke never get lung cancer (it is estimated that
even those who smoke 30 cigarettes per day for 50 years have

only a 1 in 6 chances of dying from lung cancer17).
Clearly, there are additional causal influences yet to be
discovered, perhaps including genetic susceptibility factors,
that determine susceptibility to lung cancer among smokers.

EF FOR GENETIC FACTORS AFFECTING
AIDS PROGRESSION

AIDS Long-Term Survival Versus Progression
The influence of host genetic factors (AIDS restriction

genes, ARGs) on AIDS progression is an important case of
multiple factors. We consider the effects of 13 genetic factors
that have been typed on AIDS cohorts as influences on slow
progression to AIDS.18Y21 We define the longest surviving
third of subjects, for each of 4 AIDS definitions, to be slow
progressors. Of the 13 factors, 11 have 2 levels (in most cases
for dominant or recessive influence on AIDS progression) and
2 have 3 or more levels, giving 16,000 possible genotypic
combinations, of which 162 actually occur in the study group,
clearly too many for robust results.

The 13 genetic factors have an independent effect on
AIDS progression in that their effects on survival are additive,
where factors are significantly nonadditive, for example, for
the KIR 3DS1-HLA Bw4 80I interaction, a term for the
interaction is included in the model. Therefore, rather than
considering the empirical matrix whose entries are the actual
numbers of slow progressor subjects with each combination
of factors, we consider a smoothed distribution given by 2
approximations: first, that progression to the AIDS endpoint
is described by a Weibull distribution; second, that the
survival effect of the factors is additive (although the Weibull
distribution may not precisely describe AIDS progression, the
fit is extremely good, and the Weibull allows considering
factors as additive). With these assumptions, the survival
distribution of each group of factors is given by the Weibull
distribution with the same shape parameter as for the whole
group and the sum of the A value for the factors as scale
parameter. This survival distribution determines the fraction
of subjects with the given combination of factors that
progress before the cutoff time for slow progression versus
those who survive past this time, that is, the relative
frequencies for each row of the contingency table.

Table 1 shows the calculated EF for long-term AIDS
versus more rapid progression, for the 13 individual genetic
factors, and for combined factors, along with AFs calculated
with the same approximations. The EF values for given
factors vary greatly between outcomes, illustrating the fact
the some factors have the greatest effect on early outcomes
and others on late outcomes. Focusing on progression to
clinical AIDS symptoms (the 1987 CDC AIDS definition),
the EFs for individual factors range from 0.1% to 2.3% for the
protective factor HLA B*27. The overall EF is calculated for
the 162 by 2 table in which each combination of factors is
represented by a row. For progression to AIDS 1987, the EF
for combined factors is 9.0%, somewhat less than the sum of
the EFs for individual factors (9.4%). The difference is small,
demonstrating that in a practical case, the EF is very nearly
additive. For completely independent factors, the net mutual
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information is greater than the sum of the mutual information
for individual factors due to the convexity of the information
measure.10 However, here some of the genetic factors are
nonindependent, which tends to make mutual information
smaller. The values for the AF calculated for individual
factors are in every case much larger than the corresponding
EF. We earlier calculated AFs for combined susceptible and
combined protective factors (as noted above, there is no
meaningful way to calculate an AF for both protective and
combined factors); for slow progression to AIDS 1987, these
were respectively 26.7% and 20.4%, both considerably larger
than the EF for all factors.19

Table 2 gives the results for the corresponding calcu-
lation for rapid progression, defined as progression among the
most rapid third of subjects. The overall EFs for rapid
progression are somewhat smaller than for slow progression,
ranging from 5% for progression to CD4 G200 to 7% for
progression to AIDS 1987. Here in 2 cases, (CD4 G200 and
AIDS 1993), the overall EF is larger than the sum of the
individual factor EFs.

For comparison, we have calculated the EV for all 13
genetic factors considered together for the Cox model by the
method of Schemper and Henderson.8 Here we are measuring
the influence of the genetic factors on overall progression
considered as a continuous variable; hence, there is no
distinction between early and rapid progression. The EV for
13 genetic factors, for progression to AIDS 1987, is 12.2%.

The fact that the EV for genetic factors is somewhat larger
than the EF may reflect the fact that the Cox model analysis
captures early and late effects in the same analysis.

DISCUSSION
We have defined a statistic, the EF, which describes

the extent to which cumulative categorical causal factors,
in particular genetic factors, explain or predict categorical
disease outcomes. We show that 13 ARGs have an EF of
9.0% for slow progression to AIDS. Thus, approximately
10% of differential progression is predicted or explained
by these genetic factors. Although these fractions may
seem small, it is notable that the EF for differential
progression is similar to the EF (11.5%) for the influence
of smoking on lung cancer.

From a public health standpoint, the AF is a natural
measure of the impact of a causal factor on disease. Knowing
that the AF of smoking for lung cancer death is 74%, we may
assert that eliminating cigarette smoking would eliminate
74% of lung cancer deaths. However, the AF is not a good
measure of our knowledge of the impact of cigarette smoking
on lung cancer: the 74% figure obscures the fact that the great
majority of smokers never get lung cancer, and thus
incorrectly implies that the cause of lung cancer is largely
understood. Moreover, the AF is not a particularly meaning-
ful measure for the influence of genetic factors on disease, as
these are not exposures that can be controlled. In addition, the

TABLE 1. Relative Risk (RR), Attributable Fraction (AF), and Explained Fraction (EF) for Genetic Factors Affecting Slow
Progression to AIDS

Model Frequency

AIDS Endpoint*

CD4 G200 AIDS 1993 AIDS 1987 Death

RR AF EF RR AF EF RR AF EF RR AF EF

Protective factors

CCR5-$32 dominant 20% 1.41 7.5% 1.1% 1.26 5.0% 0.5% 1.09 1.8% 0.1% 1.24 4.5% 0.7%

CCR2-64I dominant 18% 1.24 4.1% 0.4% 1.11 1.9% 0.1% 1.06 1.1% 0.1% 1.14 2.5% 0.2%

SDF1-3A recessive 4% 1.36 1.4% 0.2% 1.42 1.6% 0.3% 1.40 1.5% 0.6% 1.50 1.9% 0.9%

HLA-B*27 dominant 10% 1.28 2.8% 0.3% 1.47 4.5% 0.9% 1.51 4.9% 2.3% 1.41 4.0% 1.3%

HLA-B*57 dominant 9% 1.62 5.1% 1.3% 1.54 4.5% 1.0% 1.22 1.9% 0.4% 1.07 0.6% G0.1%

KIR-3DS1VHLA-BW4 80I interaction codominant † † † 1.9% † † 2.3% † † 1.2% † † 1.7%

Susceptible factors

CCR5-P1 recessive 12% 1.18 2.2% 0.4% 1.30 3.5% 1.1% 1.38 4.4% 0.8% 1.17 2.0% 0.2%

IL10-5A dominant 44% 1.07 3.0% 0.1% 1.11 4.5% 0.3% 1.17 6.9% 0.4% 1.07 3.1% 0.1%

1� HLA Class I homozygosity NA 9% 1.14 2.3% 0.3% 1.14 2.3% 0.3% 1.16 2.6% 0.2% 1.05 0.9% G0.1%

2Y3� HLA Class I homozygosity NA 16% 1.30 1.4% 0.5% 1.25 1.2% 0.4% 1.47 2.2% 0.5% 1.48 2.3% 0.6%

HLA-B*35Px dominant 5% 1.27 2.5% 0.7% 1.32 2.8% 1.0% 1.63 5.5% 1.7% 1.63 5.5% 1.9%

RANTES-H3/H5 dominant 6% 1.09 0.5% 0.1% 1.17 0.9% 0.2% 1.32 1.8% 0.3% 1.20 1.1% 0.1%

KIR-3DS1 codominant † † † 0.9% † † 1.1% † † 0.8% † † 1.5%

All factors combined additive † † † 7.9% † † 8.7% † † 9.0% † † 8.3%

Sum of factor EFs 8.2% 9.3% 9.4% 9.3%

Subjects are 596 seroincident European Americans in 4 AIDS cohorts (Multicenter AIDS Cohort Study, San Francisco City Clinic Cohort , Multicenter Hemophilia Cohort Study,
and AIDS Linked to the Intravenous Experience, as described.6,18,19 To avoid confounding effects of Highly Active Antiretroviral Therapy, all outcomes are censored on 6/1/97
(ALIVE)) or 12/31/95 (other cohorts). RR and AF refer to slow progression for protective factors and to rapid progression for susceptible factors. Cutoff times for the 4 outcomes are as
follows, respectively: for slow progression 9.0, 9.8, 10.7, and 12.1 years; for rapid progression 5.6, 5.5, 8.0 and 9.5 years.

*AIDS endpoint definitions: CD4 G200, first drop of CD4+ cell count below 200 cell/KL; AIDS 1993, the CDC 1993 AIDS definition: clinical AIDS symptoms or CD4 G200; AIDS
1987, the CDC 1987 AIDS definition: clinical AIDS symptoms; death, AIDS-related death.

†Not calculated; frequencies and AF not well defined for multilevel factors.
NA indicates not applicable.
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definition of the AF requires dividing the subjects into
exposed and unexposed, but for genetic factors, it is often
arbitrary which allele of a locus constitutes the exposure, and
in addition, this approach does not deal effectively with the
case of multiple factors.

For scientific understanding, it is more useful to know
to what extent the proven causal factors predict the outcomes.
This is naturally measured by the correlation between factors
and outcomes, measured by R2 for linear regression or by the
EV for more general regression. The EF is the natural
extension of the EV to a contingency table, and thus provides
a statistic that applicable to the cases for which an AF is
defined. By making simplifying assumptions, both confidence
intervals and good approximations to true population value of
the EF can be calculated (Appendix 2).

As the AF has the practical application of guiding
public health measures to reduce exposures, the EF or the EV,
as measures of explanation, have a potentially important
application to allocating research resources by giving an
approximate measure of how much of the causality of a
disease is unknown. Unknown factors include environmental,
host-genetic, pathogen-genetic, and stochastic effects. For the
case of AIDS progression, as for the case of smoking, the AF
is much larger than the EF, so the AF, taken as a measure of
the degree of scientific understanding, greatly overestimates
how well the disease is understood. Although it is unknown
how much of AIDS progression is determined by genetic
factors, it is plausible that it is substantially more than 9% EF

that we have calculated for the known ARGs, suggesting that
there is significant genetic influence on this disease that
remains to be discovered.
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1987, the CDC 1987 AIDS definition: clinical AIDS symptoms; death, AIDS-related death.

†Not calculated; frequencies and AF not well defined for multilevel factors.
NA indicates not applicable.
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APPENDIX 1: ANALOGY WITH R2 AND EV
We may write the definition (4) of the EF as:

EF ¼
~
ij

aij log
aij

aiI

� �
þ log

1
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j~
j

aIjlogðaIjÞ
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: ðA1Þ

Thus,

EF ¼ 1j

j~
i

aiI ~
j

pijlogðpijÞ

j~
j

aIjlogðaIjÞ
: ðA2Þ

Here p
ij

is the probability that an individual carrying
factors i falls into disease category j; thus j~j pijlogðpijÞ is
the entropy of row i, and the sum over the rows weighted by
the frequencies ai of the factors gives the residual

entropyVthe residual uncertainty of disease stateVwith
knowledge of the disease factors. It may be seen that the
EF is analogous to the regression R

2
,
22

and thus is in effect an
EV for the contingency table. However, we have used the
definition (4) and the nomenclature Bexplained fraction^
(EF), as these emphasize the analogy with the attributable
factor (AF). Logically, the name Bexplained fraction^ should
be reserved for calculations based on population frequencies,
that is, cohort studies rather than case-control studies. Indeed,
any explained variation for a population could be considered
to be an explained fraction.

APPENDIX 2: STATISTICS OF THE EXPLAINED
FRACTION

Although the EF is closely related to the likelihood ratio
statistic, our use of it is quite different, leading to different
statistical questions. The likelihood ratio statistic is used to
determine whether the rows and columns of a matrix are
significantly nonindependent, using the fact that under the
assumption of independence, 2 times the statistic is asymp-
totically distributed as a W

2.23 For us, the object of interest is
the true value of I(1:2) for the underlying population; thus, we
need estimators of this parameter from the observed values.
The observed value Ið1; 2Þ, that is, the value calculated by
Eq. (4) using table frequencies obtained from a particular
sample, is a biased estimator for I(1,2). This bias is clearly
shown by two special cases. First, if there is no correlation
between factor and disease in the population, the true value of
I(1:2) is 0. However, most matrices of samples of this
population will have nonzero I(1:2); because this is always
positive, the mean value of the observed Ið1; 2Þ will be
greater than 0. Second, and more critical, consider the case
where we have a very large set of genetic markers. With
enough (unlinked) markers, there will only be a single
individual for each composite genotype (or no individuals, in
which case, the row may be ignored). In this case, the
genotype necessarily and trivially Bpredicts^ the disease
group for each individual, and EF = 1, even if the genetic
markers have no causal relation with the disease at all; that is,
the model is saturated. Practically, we must take different
approaches to the case of many factors; the calculation above
of the effect of genetic factors on AIDS progression shows
one approach. In this section, we consider the estimation of
the EF and its confidence interval.

The null hypothesis of independence of the rows and
columns of a matrix is equivalent to the assumption that I(1:2) =
0 in the population. For I(1:2) m 0 in the population, for N
subjects observed, 2N times the observed Ið1; 2Þ is asymptot-
ically distributed as a noncentral W

2 with noncentrality
parameter 2NI(1,2) and (n j 1)(m j 1) degrees of
freedom for n rows and m columns.10 Thus, we have a
likelihood function,

Lð2NIð1 : 2ÞÞ ¼ W2
2NIð1:2Þð2NÎð1 : 2ÞÞ; ðB1Þ

from which we can obtain a maximum likelihood
estimation and confidence intervals. Frequently, the contingency
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FIGURE 1. Simulation results: Histograms of explained fraction (EF) calculated from contingency tables drawn randomly from
assumed population frequencies (bars), compared with noncentral W2 prediction of observed EF (circles). Vertical scale is number of
subjects in a 0.01 interval of observed EF. Assumed population contingency tables are for scenarios with true EF of 13.4% (A, B, C),
or 4.4% (D, E, F), as described in the text. Random samples are of 50 (A, D), 100 (B, E), or 300 (C, F) individuals. A total of 100,000
random samplings were performed for each case. Note change of vertical scale between plots.
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table will be sparse, and W
2 may not be a good approximation.

Also, to apply Eq. (B1) to the EF, we must make the additional
approximation that the EF varies proportionally to the mutual
information, although in fact, the denominator of the EF is also
varying. However, we show in the simulations below that for a
realistic case, these approximations allow a reasonably
accurate estimate of the true population EF.

Limiting the Degrees of Freedom
When many factors influence the outcome, the number

of combinations of factors becomes very large, and as noted,
direct computation of the EF from Eq. (7) becomes
meaningless. Here an alternative is to use an explained
variation measure calculated by logistic regression.24 To
obtain a meaningful EF measure for the contingency table, we
may make a simplifying approximation that the effects of the
different factors are independent, so that the relative risks of
combinations of factors are the products of the relative risks
of the individual factors. For cases where factors have
significant interactions, we add new effects representing the
interaction, so that an enlarged set of independently acting
factors is produced.

Formally, if we have M factors, we can consider the
contingency table in its alternate form of an M + 1
dimensional table (one dimension for each factor, and one
for disease state). With the additional assumption that the
factors occur independently in the population, the assumption
of independence of effects implies that in the underlying
population, for a case of 3 explanatory factors indexed by i, p,
and q, >ipqj ¼ >iIIj>IpIj>IIqj, where the >_s are the entries in the
multidimensional frequency table, or the corresponding
marginals. Therefore, to estimate the EF by this method, we
replace ˆthe ˆobserved >ipqj by >̂iIIj>IpIj>IIj. Inˆ particular
circumstances, better approximations to the effects of
combined factors may be available; we use one such
approach below for the case of genetic factors affecting

progression to AIDS. The critical issue is to reduce the
degrees of freedom.

Simulation: Test of Bias in the Observed EF
To illustrate the bias and variance of the EF that would

be calculated from observations of actual population
frequencies, we simulate observations of a specific disease
association scenario. We suppose that there are 2 disease
categories, D1 and D2, with frequencies 0.7 and 0.3, and 3
causal factors with population frequencies 0.4, 0.2, and 0.1,
that are uncorrelated in the population and act independently,
so that the relative risk for multiple factors is the product of
the risk for individual factors. We first suppose that the
relative risks for the 3 factors are 2.0, 0.5, and 3.0,
respectively. By Eq. (4), the EF for the 3 factors combined
is 13.4%. We also simulate a case of weaker factors, with the
3 factors having the same frequencies but relative risks now
of 1.5, 0.7, and 2.0, respectively, yielding an EF of 4.4%.

We simulate studies that observe either 50, 100, 300, or
1000 subjects from this population. For each case, we run
100,000 random draws, and for each draw, we calculate an
observed EF, a maximum likelihood estimate of the EF based
on the noncentral W2 distribution with 7 degrees of freedom,
for the observed frequencies, and upper and lower 95%
confidence limits for this distribution. Figure 1A-F shows
histograms comparing the simulation results for 50, 100, or
300 subjects to the predicted noncentral W2 distribution of the
EF. The noncentral W2 gives an excellent fit for 100 or more
subjects. Table 3 gives, for the same simulations, the mean of
the observed EF, the mean of the maximum likelihood
estimates of the EF, and the frequencies of the actual EF
being above or below the calculated confidence interval. We
note that the maximum likelihood (ML) estimate of the EF is
much less biased than the observed EF; for most cases, the
mean of the maximum likelihood estimate is quite close to the
actual EF, and the frequency with which the true value is
above or below the 95% confidence intervals is close to 2.5%.

TABLE 3. Comparison of Mean Observed Explained Fraction (EF) With Maximum Likelihood (ML) Estimate of EF From the
Noncentral W2 Likelihood Function, for 4 Simulated Sample Sizes From Assumed Population Frequencies for Strong and
Weak EF Scenarios

Simulated
EF N

Mean EF
Observed

Mean ML
Estimated EF

% Error In
Observed

% Error In
Estimated

Test of 95% CI

% Below % Above

13.4% 50 23.6% 13.2% 77% j1.5% 0.7% 2.4%

13.4% 100 19.3% 14.2% 44% 5.6% 1.5% 2.2%

13.4% 300 15.5% 13.8% 16% 3.5% 2.1% 1.7%

13.4% 1000 14.0% 13.5% 4.5% 0.9% 1.9% 1.9%

4.4% 50 15.6% 5.7% 258% 31% 1.2% G0.1%

4.4% 100 10.5% 5.4% 141% 24% 2.4% 0.5%

4.4% 300 6.5% 4.8% 48% 9.5% 2.8% 2.2%

4.4% 1000 5.0% 4.5% 14% 2.4% 2.6% 2.4%

CI indicates confidence interval.
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